Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Int ; 185: 108510, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38460241

RESUMEN

Ultrafine particles (UFP, those with diameters ≤ 100 nm), have been reported to potentially penetrate deeply into the respiratory system, translocate through the alveoli, and affect various organs, potentially correlating with increased mortality. The aim of this study is to assess long-term trends (5-11 years) in mostly urban UFP concentrations based on measurements of particle number size distributions (PNSD). Additionally, concentrations of other pollutants and meteorological variables were evaluated to support the interpretations. PNSD datasets from 12 urban background (UB), 5 traffic (TR), 3 suburban background (SUB) and 1 regional background (RB) sites in 15 European cities and 1 in the USA were evaluated. The non-parametric Theil-Sen's method was used to detect monotonic trends. Meta-analyses were carried out to assess the overall trends and those for different environments. The results showed significant decreases in NO, NO2, BC, CO, and particle concentrations in the Aitken (25-100 nm) and the Accumulation (100-800 nm) modes, suggesting a positive impact of the implementation of EURO 5/V and 6/VI vehicle standards on European air quality. The growing use of Diesel Particle Filters (DPFs) might also have clearly reduced exhaust emissions of BC, PM, and the Aitken and Accumulation mode particles. However, as reported by prior studies, there remains an issue of poor control of Nucleation mode particles (smaller than 25 nm), which are not fully reduced with current DPFs, without emission controls for semi-volatile organic compounds, and might have different origins than road traffic. Thus, contrasting trends for Nucleation mode particles were obtained across the cities studied. This mode also affected the UFP and total PNC trends because of the high proportion of Nucleation mode particles in both concentration ranges. It was also found that the urban temperature increasing trends might have also influenced those of PNC, Nucleation and Aitken modes.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Ciudades , Monitoreo del Ambiente/métodos , Europa (Continente) , Tamaño de la Partícula , Material Particulado/análisis , Emisiones de Vehículos/análisis
2.
Artículo en Inglés | MEDLINE | ID: mdl-37835093

RESUMEN

Air pollution is one of the greatest environmental risks to health, causing millions of deaths and deleterious health effects worldwide, especially in urban areas where citizens are exposed to high ambient levels of pollutants, also influencing indoor air quality (IAQ). Many sources of indoor air are fairly obvious and well known, but the contribution of outside sources to indoor air still leads to significant uncertainties, in particular the influence that environmental variables have on outdoor/indoor pollutant exchange mechanisms. This is a critical aspect to consider in IAQ studies. In this respect, an experimental study was performed at a public site such as a university classroom during a non-academic period in Madrid city. This includes two field campaigns, in summer (2021) and winter (2020), where instruments for measuring gases and particle air pollutants simultaneously measured outdoor and indoor real-time concentrations. This study aimed to investigate the dynamic variations in the indoor/outdoor (I/O) ratios in terms of ambient outdoor conditions (meteorology, turbulence and air quality) and indoor features (human presence or natural ventilation). The results show that the I/O ratio is pollutant-dependent. In this sense, the infiltration capacity is higher for gaseous compounds, and in the case of particles, it depends on the particle size, with a higher infiltration capacity for smaller particles (

Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Ambientales , Humanos , Material Particulado/análisis , Gases , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Tamaño de la Partícula , Contaminación del Aire Interior/análisis
3.
Environ Int ; 172: 107744, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36696793

RESUMEN

The 2017-2019 hourly particle number size distributions (PNSD) from 26 sites in Europe and 1 in the US were evaluated focusing on 16 urban background (UB) and 6 traffic (TR) sites in the framework of Research Infrastructures services reinforcing air quality monitoring capacities in European URBAN & industrial areaS (RI-URBANS) project. The main objective was to describe the phenomenology of urban ultrafine particles (UFP) in Europe with a significant air quality focus. The varying lower size detection limits made it difficult to compare PN concentrations (PNC), particularly PN10-25, from different cities. PNCs follow a TR > UB > Suburban (SUB) order. PNC and Black Carbon (BC) progressively increase from Northern Europe to Southern Europe and from Western to Eastern Europe. At the UB sites, typical traffic rush hour PNC peaks are evident, many also showing midday-morning PNC peaks anti-correlated with BC. These peaks result from increased PN10-25, suggesting significant PNC contributions from nucleation, fumigation and shipping. Site types to be identified by daily and seasonal PNC and BC patterns are: (i) PNC mainly driven by traffic emissions, with marked correlations with BC on different time scales; (ii) marked midday/morning PNC peaks and a seasonal anti-correlation with PNC/BC; (iii) both traffic peaks and midday peaks without marked seasonal patterns. Groups (ii) and (iii) included cities with high insolation. PNC, especially PN25-800, was positively correlated with BC, NO2, CO and PM for several sites. The variable correlation of PNSD with different urban pollutants demonstrates that these do not reflect the variability of UFP in urban environments. Specific monitoring of PNSD is needed if nanoparticles and their associated health impacts are to be assessed. Implementation of the CEN-ACTRIS recommendations for PNSD measurements would provide comparable measurements, and measurements of <10 nm PNC are needed for full evaluation of the health effects of this size fraction.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/análisis , Tamaño de la Partícula , Monitoreo del Ambiente , Contaminación del Aire/análisis , Europa (Continente) , Ciudades , Hollín
5.
Environ Sci Pollut Res Int ; 23(17): 17171-82, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27215985

RESUMEN

This study provides an analysis of the spatial distribution and trends of NO, NO2 and O3 concentrations in Portugal between 1995 and 2010. Furthermore, an estimation model for daily ozone concentrations was developed for an urban and a rural site. NO concentration showed a significant decreasing trend in most urban stations. A decreasing trend in NO2 is only observed in the stations with less influence from emissions of primary NO2. Several stations showed a significant upward trend in O3 as a result of the decrease in the NO/NO2 ratio. In the northern rural region, ozone showed a strong correlation with wind direction, highlighting the importance of long-range transport. In the urban site, most of the variance is explained by the NO2/NOX ratio. The results obtained by the ozone estimation model in the urban site fit 2013 observed data. In the rural site, the estimated ozone during extreme events agrees with observed concentration.


Asunto(s)
Contaminantes Atmosféricos/análisis , Óxidos de Nitrógeno/análisis , Ozono/análisis , Portugal
6.
Sci Total Environ ; 524-525: 178-86, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25897726

RESUMEN

In this study, an indoor/outdoor monitoring program was carried out in a gymnasium at the University of Leon, Spain. The main goal was a characterization of aerosol size distributions in a university gymnasium under different conditions and sports activities (with and without magnesia alba) and the study of the mass fraction deposited in each of the parts of the respiratory tract. The aerosol particles were measured in 31 discrete channels (size ranges) using a laser spectrometer probe. Aerosol size distributions were studied under different conditions: i) before sports activities, ii) activities without using magnesia alba, iii) activities using magnesia alba, iv) cleaning procedures, and v) outdoors. The aerosol refractive index and density indoors were estimated from the aerosol composition: 1.577-0.003i and 2.055 g cm(-3), respectively. Using the estimated density, the mass concentration was calculated, and the evolution of PM1, PM2.5 and PM10 for different activities was assessed. The quality of the air in the gymnasium was strongly influenced by the use of magnesia alba (MgCO3) and the number of gymnasts who were training. Due to the climbing chalk and the constant process of resuspension, average PM10 concentrations of over 440 µg m(-3) were reached. The maximum daily concentrations ranged from 500 to 900 µg m(-3). Particle size determines the place in the respiratory tract where the deposition occurs. For this reason, the inhalable, thoracic, tracheobronchial and respirable fractions were assessed for healthy adults and high risk people, according to international standards. The estimations show that, for healthy adults, up to 300 µg m(-3) can be retained by the trachea and bronchi, and 130 µg m(-3) may reach the alveolar region. The different physical activities and the attendance rates in the sports facility have a significant influence on the concentration and size distributions observed.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Contaminación del Aire Interior/estadística & datos numéricos , Tamaño de la Partícula , Material Particulado/análisis , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...